Institute for Mathematical Physics a Global Theory of Algebras of Generalized Functions a Global Theory of Algebras of Generalized Functions

نویسندگان

  • M. Grosser
  • M. Kunzinger
  • R. Steinbauer
  • J. Vickers
چکیده

We present a geometric approach to deening an algebra ^ G(M) (the Colombeau algebra) of generalized functions on a smooth manifold M containing the space D 0 (M) of distributions on M. Based on diierential calculus in convenient vector spaces we achieve an intrinsic construction of ^ G(M). ^ G(M) is a diierential algebra, its elements possessing Lie derivatives with respect to arbitrary smooth vector elds. Moreover, we construct a canonical linear embedding of D 0 (M) into ^ G(M) that renders C 1 (M) a faithful subalgebra of ^ G(M). Finally, it is shown that this embedding commutes with Lie derivatives. Thus ^ G(M) retains all the distinguishing properties of the local theory in a global context.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the boundedness of almost multipliers on certain Banach algebras

Almost multiplier is rather a new concept in the theory of almost functions. In this paper we discussion the boundedness of almost multipliers on some special Banach algebras, namely stable algebras. We also define an adjoint and extension for almost multiplier.

متن کامل

On the stability of generalized derivations on Banach algebras

We investigate the stability of generalizedderivations on Banach algebras with a bounded central approximateidentity. We show that every approximate generalized derivation inthe sense of Rassias, is an exact generalized derivation. Also thestability problem of generalized derivations on the faithful Banachalgebras is investigated.

متن کامل

Fuzzy Acts over Fuzzy Semigroups and Sheaves

lthough fuzzy set theory and  sheaf theory have been developed and studied independently,  Ulrich Hohle shows that a large part of fuzzy set  theory  is in fact a subfield of sheaf theory. Many authors have studied mathematical structures, in particular, algebraic structures, in both  categories of these generalized (multi)sets. Using Hohle's idea, we show that for a (universal) algebra $A$, th...

متن کامل

A New Common Fixed Point Theorem for Suzuki Type Contractions via Generalized $Psi$-simulation Functions

In this paper, a new stratification of mappings, which is  called $Psi$-simulation functions, is introduced  to enhance the study of the Suzuki type weak-contractions. Some well-known results in weak-contractions fixed point theory are generalized by our researches. The methods have been appeared in proving the main results are new and different from the usual methods. Some suitable examples ar...

متن کامل

Institute for Mathematical Physics Generalized Functions for Quantum Fields Obeying Quadratic Exchange Relations Generalized Functions for Quantum Elds Obeying Quadratic Exchange Relations

The axiomatic formulation of quantum eld theory (QFT) of the 1950's in terms of elds deened as operator valued Schwartz distributions is reexamined in the light of subsequent developments. These include, on the physical side, the construction of a wealth of (2-dimensional) soluble QFT models with quadratic exchange relations, and, on the mathematical side, the introduction of the Colombeau alge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009